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An approximate solution is developed for the system of equations describing 
flow and ion transport in a diffuse electrical double layer slightly perturbed from 
equilibrium. The approximation is valid only when the potential difference across 
the diffuse layer is small, less than about 25 mV. When the approximate solution 
is used to study wave motion of low-tension interfaces, it is found that ion 
transport in diffuse layers slows down interfacial motion in both stable and 
unstable situations. Although the slowing effect is relatively small (a few per cent 
or less) when the small potential approximation applies, the form of the solution 
suggests that the effect could be significant for potential differences in the 
50-100 mV range, which exist in many systems of interest. There are also indica- 
tions that the slowing effect can significantly influence wave motion of thin liquid 
films with diffuse layers, e.g. soap films, although a detailed analysis of the 
thin-film situation is not carried out. 

1. Introduction 
Interfaces of low tension, i.e. a few dynes per centimetre or less, occur in 

oil-water systems when certain surfactants are present, in many biological 
systems and in fluids near critical or critical solution points. Tensions down 
to about 0.001 dyne/cm have been observed (for further discussion and references 
see Miller & Scriven 1 9 7 0 ~ ) .  Understanding the wave motion of low-tension 
interfaces is important because, by their very nature, they are much easier to 
deform than more familiar interfaces of higher tension. As a result, small vibra- 
tions, perhaps even random thermal motion, can initiate wave motion of 
significant amplitude. 

When interfacial tension is low its contribution to the energy of interfacial 
deformation is small. Consequently, other effects which also make small contribu- 
tions may be quite important in low-tension systems, even though they have no 
appreciable influence on wave motion of ordinary high-tension interfaces. One 
such effect, the one of interest here, is that of electrical forces in double layers. 

As might be expected, the smallness of interfacial tension’s stabilizing influence 
makes low-tension interfaces subject to instability. Miller & Scriven (1970b) 
presented a thermostatic stability analysis for low-tension interfaces having 
diffuse double layers of the Gouy-Chapman type (Verwey & Overbeek 1948). 
One assumption of the thermostatic analysis is that a diffuse layer offers no 
resistance to the transport of ions, i.e. ionic diffusion coefficients are effectively 
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infinite. The stability condition is not affected by this assumption because a t  
marginal stability there is no motion of the interface and no driving force for ion 
diffusion. However, when the interface does move, either during stable wave 
motion or during the growthof an unstable disturbance, electrochemical potential 
gradients do occur and the thermostatic assumption may no longer be adequate. 

This paper assesses the dynamic effects of ion transport on wave motion of 
low-tension interfaces with diffuse layers. To solve the general equations 
describing flow and ion transport in a diffuse layer would be a formidable task. 
It is not undertaken here. Instead an approximate solution from which useful 
information can be extracted and promising areas for further research identified is 
Sought. When the potential drop across the diffuse layer is small -less than about 
25 mV - the equations can be simplified considerably because, as is shown below, 
the total ion concentration becomes independent of posi tion and the momentum 
equation reduces to the same form as that found when no electrical effects are 
present. With these simplifications an approximate solution can be obtained using 
the procedure described below. 

The approximate solution indicates that ion transport acts to slow down inter- 
facial motion, reducing the oscillation frequency when the interface is stable and 
the disturbance growth rate when it is unstable. These effects are due to retarding 
electrical forces which arise when a finite resistance to ion transport exists. 
Although the slowing effect is relatively small, being no larger than a few per cent 
for the small potential drops to which the approximation applies, the form of the 
solution suggests that the effect could be much larger when potential drops are 
in the range of 50-100 mV, which is representative of many systems of interest. 
Thus, ion transport in diffuse layers should be considered in interpreting capillary 
wave phenomena and related movements of low-tension interfaces with double 
layers. The results also suggest that ion transport may be an important factor 
influencing wave motion of thin liquid films of low tension, but confirmation of 
this possibility awaits further research. 

The analysis of this paper is related to existing electrohydrodynamic treat- 
ments which show how applied electric fields influence interfacial stability and 
wave motion in systems having neither ions nor double layers (Melcher 1963; 
Melcher & Smith 1969). Indeed, the present work may be viewed as one step in 
the development of electrohydrodynamic theory for systems with double layers. 
This matter is discussed further below. 

2. Plane diffuse layer before deformation 
The system considered is a dilute incompressible solution of a single salt which 

dissociates into positive and negative ions of equal valence vo. If the solution has 
a uniform dielectric constant e, the governing differential equations for flow and 
transport are as follows. 

Momentum (Newtonian fluid) : 

Continuity : v . v  = 0. 
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Equations of electric field (usual electrostatic approximation of Maxwell's 
equations; see Penfield & Haus 1967): 

V x E = O  or E=-VY" ,  (3) 

( 4 )  

dc+/dt = 9 + v .  (Vc++c+Vu), (5) 

dc-/dt = 9- v . (VC- - c- VU) . (6) 

V2u = ( - 47~v,e,/ekT)p,. 

Conservation of individual species (dilute ideal solution; see Bird et al .  1960): 

In  these equations the free charge density and dimensionless electrical potential 
are defined by 

P e  = v 0 e i J N O ( c + - c - ) 7  (7)  

u = v , e , Y / k T .  (8) 

Also, 9+ and 9- are diffusion coefficients, No is Avogadro's number, e, the magni- 
tude of the electronic charge, k the Boltzmann constant, T the absolute tempera- 
ture and E the electric field. In  connexion with (1)) it should be noted that the 
entire electrical body force can be expressedin the following form (Sanfeld 1968) : 

The second term of (9) vanishes here since e is taken as uniform, while the third 
term has, for convenience, been included in the pressure p ,  i.e. 

P = Pmech- (E2/sn)p(ae/lap)!Z'7 

where pmech is the usual mechanical pressure. 
Por an interface with a diffuse layer in which there is no convection and no net 

flux of either ion a t  any point, (4)-(6) may be combined to obtain the well-known 
Poisson-Boltzmann equation: 

v2u = K2 sinh u. 

In  this equation ~ - 1  is the Debye length, a measure of diffuse-layer thickness, and 
is defined by 

(10) 

K-I = ( e k T / 8 n v ~ e ~ N 0 c , ) S ,  (11) 

where c, is the concentration of each ion in the bulk solution outside the diffuse- 
layer region. Equation (10) can be solved exactly to obtain the potential distribu- 
tion in an equilibrium diffuse layer near it plane interface (Verwey & Overbeek 
1948) or near a plane interface which has been given a small wavy perturbation 
(Miller & Scriven 1970a). However, when ions in the diffuse layer are not in 
equilibrium after the interfacial deformation, which is the situation of interest 
here, the system of coupled differential equations is much more difficult to solve. 

Considerable simplification of the equations occurs, however, when the 
dimensionless potential u is taken to be somewhat less than unity a t  all points, 
i.e. when the potential drop across the diffuse layer is less than about 25mV. 
This approximation for small potentials, frequently called the Debye-Hiickel 
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approximation, is discussed further below. When it is applied to a plane diffuse 
layer in equilibrium (10) reduces to 

d2u/dz2 = K ~ U .  (12) 

When (12) is solved for a diffuse layer in the region x > 0, it is found that the 
potential varies exponentially and that the concentration distributions are 
given by 

c, = coe-u z co(l-u), 

c -  = cOeU z co(l+u) .  

(13) 

(14) 

Because u is small, terms of order u2 are neglected. It is convenient to define two 
new quantities from (13) and (14) as follows: 

0 = c+ + c- 2c0, (15) 

(16) q5 = c., - c- = p,/(v,e,No) z - 2c,u. 

Here 0 is the total ion concentration, while q5 is closely related to the free charge 
density. 

3. Transport in diffuse layer during deformation 
When the equilibrium diffuse layer described by (12)-(16) is given a small 

wavy perturbation its asymptotic behaviour can be determined by the well- 
known normal-mode method (see, for example, Chandrasekhar 1961). According 
to this method, the interfacial position z I  for the mode of wavenumber a is 
given by 

zI = Bf(x, y) e+t. (17)  

The function f of (17) describes the form of the perturbation; it is a periodic, e.g. 
sinusoidal, function of its arguments and satisfies the following equation: 

Moreover, the normal velocity, electrical potential, and concentration distribu- 
tions in the perturbed diffuse layer all have the form 

F ( x ,  Y, 2, t )  = qC4 +F,(z)f(x, Y) e- j t ,  (19) 

where the subscript i refers to values before interfacial deformation while the 
subscript p refers to perturbations produced by the deformation. 

When appropriate fields of the form (19) are substituted into the governing 
differential equations and when only terms of first order in the perturbations are 
retained, the following set of coupled ordinary differential equations is obtained. 

Normal component of vorticity equation: 

(D2-a2r2)2 = 0. (20) 

(21) 

Normal component of curl of vorticity equation: 

(D2 - a2) (D2 - a2r2) W = ( - a21cTAT,Ku,e-Kz/,u) (2c0up + &,). 
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Equation of electric field: 

Sum of species equations (with 9+ = 9- = 9): 

8, = Kune-KZ(D - K )  4, + 2 ~ , , u , e - ~ ~ ( D ~  - KD - a2) up. ( 2 3 )  9 

Difference between species equations (with 9+ = 9- = 9): 

In these equations 2 and W are normal components of vorticity and velocity (it 
is sometimes convenient in wave-motion analyses to work with 2 instead of the 
tangential components of velocity; see Chandrasekhar 1961). Also uo is the 
(dimensionless) potential of the plane interface before deformation, 

+ =  1- PP/Pa2 

and D is the operator 8/82. Now ( 2 2 )  can be used to eliminate 4, from (21 ) ,  ( 2 3 )  
and ( 2 4 ) ,  but three coupled differential equations in W ,  8, and up remain. 

From ( 2 3 )  it can be seen that the perturbation 8, in the total ion concentration 
has the form 

8, = constant x exp { - [a2 - (P /9) ] *2 )  + terms of order uoup. ( 2 5 )  

The product uoup is proportional to ug; because the Debye-Hiickel approxima- 
tion applies terms in uoup can be neglected here, just as terms proportional to ug 
were neglected in evaluating 8 for the plane diffuse layer in (15). If it is assumed 
that there is no transfer of ions across the interface, the constant multiplying the 
first term of ( 2 5 )  is also of order uoup ,  as can be seen by adding the ionic fluxes at  
the interface: 

( j ,  +j-),+ = - 9[D8,  - 2coune-Kz Du, - KuOe-K2 #p],=, = 0. ( 2 6 )  

Thus, all terms in 8, and its derivatives may be neglected. 
The derivation has thus far been based on the assumption that ionic diffusion 

coefficients g+ and 9- are equal. However, once the relation 8, 0, or 
C+P - = - c-,, has been established, it can be used in combining the original species 
equations ( 6 )  and ( 6 )  to obtain (23 )  and ( 2 4 )  with 9 given by 2 9 + 9 - / ( 9 + + 9 - ) .  
This procedure should be valid provided that 9+ and 9- differ only slightly, 
which is the usual situation. 

When all terms in 8, are neglected and when ( 2 2 )  is substituted into ( 2 1 )  and 
(24 ) ,  these latter equations reduce to 
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Here h2 is defined as 1 + cc2ftiz - /3/97K2. By eliminating W between (27) and (28) 
one obtains a single eighth-order ordinary differential equation that governs the 
behaviour of the perturbed diffuse layer: 

In  this 
diffuse 

= [ 3 ] e - 2 i ( n 2 - , a - 1 ) 2 C l l ( E ) .  "2 (29) 

equation Z = KZ,  B = a/&, and yDL = e~'4'$3n is the magnitude of the 
layer's negative contribution to the interfacial tension (Verwey & 

Overbeek 1948). For a diffuse layer in a 0.001 molar aqueous solution of a 
univalent salt the Debye length K - ~  is about 10P6 cm (100 A). When there is 
apotential drop of 22 mV across such a diffuse layer, yDL is about 0.02 dynefcm. 
If the mean diffusion coefficient 9 has a value of 10-5cm2/s the dimensionless 
quantity in square brackets on the right-hand side of (29) is approximately equal 
to  4 x iO-13 a2 (a  in cm-l). This quantity is therefore very small when the wave- 
number a is less than about 105cm-l, i.e. when the mean wavelength (2n/a) is 
greater than about 6 x iO-5 cm. Only wavelengths which satisfy this restriction 
and which are, as a result, much greater than the diffuse-layer thickness are 
considered here. 

Neglecting the right-hand side of (29)) solving for up and applying the condition 
that up must remain finite for large z, one finds that 

(30) u P 4 = A, e - K h Z  + A ,  e - a Z  + A, e - ( Z + K ) Z  + A e-(ar+K)z . .  

The normal velocity W can be obtained by combining (30) and (28) and is 
given by 

It is noteworthy that this form of the velocity distribution, that is, a sum of terms 
proportional to ecaZ and e-arz, is the same as that found using existing wave- 
motion analyses which consider no electrical effects (Chandrasekhar 1961). The 
reason is that neglecting the right-hand side of (29) amounts to neglecting all 
electrical terms in the differential equation for W ( Z )  obtained from the momentum 
equation. 

The approximate solution given by (30) and (31) is closely related to that of 
Buck (1969), who considered the response of a diffuse layer to a step change in 
interfacial charge. The present analysis is, however, considerably more general 
than Buck's because it includes both convection and lateral variation of the 
potential and concentrations, effects which are unimportant for the situation 
Buck studied. It seems likely that the basic approach used here may also be 
useful in analysing other small perturbations of a diffuse layer from equilibrium, 
e.g. a diffuse layer through which a finite current flows. 
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4. Boundary conditions 
Equations (30) and (31) give the normal velocity and electrical potential 

distributions for wave motion of a fluid with a diffuse layer in the region z > z I .  
The constants A,  ... A,  of these equations and A,, arising in the solution of (20), 
must be determined by applying boundary conditions a t  x = x I ,  the position of 
the wavy interface. Three additional constants arise when the usual hydro- 
dynamic equations [(20) and (21) without electrical terms] are solved for thc 
fluid in the region x < x I ,  which is assumed to have no diffuse layer. As the inter- 
facial displacement B is also unknown nine boundary conditions are required. 
Two of these conditions represent ion transport and electrical effects (see below 
for details). The remaining conditions are the usual ones of wave-motion analyses, 
viz. the kinematic condition (the rate of change of interfacial position must equal 
the normal component of velocity a t  the interface), continuity of velocity, and 
a balance of forces. Because these last two are vector conditions each leads to 
three scalar equations. 

One boundary condition on ion transport, like (26) a consequence of the 
assumption that no ions cross the interface, is the zero current condition: 

When the results of the preceding section are substituted into (32)) one finds that 

[ D 3 - ( ~ 2 + ~ 2 ) D ] u p  = 0 at z = 0. (33) 

When 8 is approximately uniform, as in the present situation, the second term 
of (32) is directly proportional to the electric field. In  other words, the conduc- 
tivity is approximately uniform and Ohm’s law describes this portion of the 
current when the Debye-Huckel approximation applies. 

Another boundary condition involves the distribution of charge along the 
wavy interface. The interfacial charge may be due either to surface-active ions 
or to induced charge a t  the surface of a highly conducting fluid such as mercury. 
If the charge is mobile and can redistribute itself during deformation to eliminate 
tangential electric forces along the interface, as is certainly true for induced 
charge and may be true for ions, the interface remains at  a uniform potential: 

Up(()) - U o K B  = 0. (34) 

Other boundary conditions are possible, but for simplicity they are not con- 
sidered here. It has been shown elsewhere (Miller & Scriven 1970a) that, when 
the effects of ion transport are absent, the potential distribution is almost 
independent of the boundary condition provided that the wavelengths are much 
greater than the diffuse-layer thickness, which is true in the situation of interest 
here. 

Because, as was noted previously, the form of the velocity distribution given 
by (31) is the same as that of the existing wave-motion analyses, the kinematic 
and velocity conditions of these analyses (Chandrasekhar 1961) can be taken 
over directly. So can the tangential component of the force balance since, with 
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the constant potential condition (34), there are no tangential electrical forces, 
i.e. electrical shear stresses, a t  the interface. 

The normal component of the force balance has, however, two terms of 
electrical origin. I n  the first place, normal electrical stresses act on the interface. 
The electrical portion of the stress tensor can be writtcii in the following form 
(see Sanfeld 1968): 

where U is the unit tensor. For the present' situation the normal electrical stress 
a t  the interface is given by 

Second, the electrical body force in the momentum equation (1) influences the 
pressure distribution. When the normal component and the divergence of the 
momentum equation are combined, the pressure distribution is found to have 
the form (19) with 

+ (hydrodynamic terms as in existing wave-motion analyses) .) 
Here p o  is the pressure in the bulk solution outside the diffuse-layer region. When 
these two terms are included, the normal component of the interfacial force 
balance takes the form? 

In  this equation the subscript 2 refers to the fluid containing the diffuse layer, 
while the subscript 1 refers to the fluid with no double layer. Also, y, is the tension 
of the thin phase transition region separating the fluids, but excluding the much 
thicker diffuse-layer region (Miller & Scriven 1970a). 

It is well known that normal electrical stresses as given by (36) can influence 
wave motion and even cause instability in systems where there are applied 
electric fields but no ions and therefore no double layers (Melclzer 1963; Taylor 

t It can be shown that the electrically produced terms of the velocity distribution, 
which are small in comparison with the terms of (31) and are therefore omitted there, make 
a contribution to the normal force equation which is much smaller than that of the electrical 
stresses whenever Ip/%wc\ < 1. Since the speed of interfacial motion and hence 1/31 
decreases with decreasing interfacial tension, this requirement can be met for sufficiently 
low values of the interfacial tension. Sections 5 and 6 below give further information on 
how low tension must be. 
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& McEwan 1965). However, in systems lacking double layers there is no counter- 
part of the electrical pressure terms given by (37). These terms plus, of course, 
the differential equations and boundary conditions describing ion transport 
differentiate the present work from existing electrohydrodynamic analyses of 
systems without double layers. 

As was indicated previously, there is a total of nine scalar boundary conditions. 
Equations (33) and (34) can be used to eliminate A ,  and A ,  from the hydro- 
dynamic boundary conditions, leaving seven linear homogeneous equations in 
seven unknowns. For a non-trivial solution to exist, the determinant of coeffi- 
cients for this system of equations must vanish, a condition which yields, after 
some manipulation, the following dispersion equation: 

Also, y4 = Ppi/pia2, y& = P / 9 K 2  and P,* = [ ( 3 / 2 , a 3 + A ~ g ~ ) / ( ~ 1 + ~ 2 ) 1 8 ,  the fre- 
quency of wave motion in the absence of viscous and electrical effects. 
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5. Ion transport effect on wave motion 
Equation (39) describes wave motion of interfaces with diffuse layers when the 

Debye-Huckel approximation applies. From it the time factor /l of (17) and (19) 
can be calculated as a function of the wavenumber a, fluid and interfacial 
properties and electrical characteristics of the diffuse layer. For real a the time 
factor is in general a complex number. Its real part P,specifies the rate of damping 
or growth of the disturbance; its imaginary part Pi specifies the angular frequency 
of oscillation. Another possibility, a more convenient one experimentally, 
involves imposing oscillations of a given frequency at a fixed location (Mann & 
Hansen 1963). In  this case /3 is imaginary while a is complex, its real part corre- 
sponding to the wavenumber and its imaginary part indicating the rate of 
amplification or attenuation with distance from the source of oscillations. 

Solution of (39) must in general be carried out numerically. It is possible, how- 
ever, to simplify the determinant sufficiently to obtain some information about 
the effect of ion transport on wave motion. First of all, if the fluids have equal 
dcnsities and viscosities, (39) reduces to 

Cgl( I - r )  + /l[rC,, - (1. - r )  C,, + rC4, - ( 1  - r)C4J = 0. (40) 
This simplification should not cause much error in systems where a light oil is in 
contact with water. Next, because the Debye length K - ~  can be quite small 
(about 100 A), the time required for transport of an ion across the diffuse layer 
is normally much smaller than the characteristic time P-l of the motion, i.e. 

lygl = / P / g K 2 1  < 1. 

Finally, when the time factor /l is so small that Irl = 1(1 -/lp/pct2)41 is of order 
unity or smaller, the coefficients Cgi can be expanded in powers of y& and a / ~ ,  
essentially the ratio of the diffuse-layer thickness to the wavelength. For aqueous 
diffuse layers with a / ~  < i.e. for relatively long wavelengths, the coefficients 
are given approximately by 
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The restriction to such small values of CL/K is required by the presence in the 
equations of the ratio .9p/p, which has a value of about in aqueous systems. 
When the Debye length ~ - 1  is 1OOA (0.001 molar solution of a univalent salt), 
the expansions are valid for mean wavelengths greater than about 0.05 em. 
Calculations show that for such wavelengths the above limitation on Irl and the 
requirement ] , O / ( . ~ K C L ) ~  < 1 (see footnote a t  (38)) are satisfied only when the total 
interfacial tension?, is less than about one dyne per centimetre. Hence the results 
obtained below apply only to low-tension interfaces. 

When (41)-(43) are substituted into (40), the following equation is found after 
some rearrangement: 

r4+ r3( I + a2) - r2( 1 + +a,) - r( 1 + a2) + a, + +a2 = 0. (44) 

In  this equation the constants a, and a2 are defined by 

a1 = P$2P2/(P2a4) = Y,P/(2P24, a2 = YDL/(P9K) = c Y 8 / ( 8 w 9 ) .  (45) 

Here /3g2 is /3g2 with the tension yp  of the phase transition region alone replaced 
by the tension y ,  = yp-yDL of the entire region between the bulk fluids, 
including the diffuse-layer region. For yDL = 0,  (44) reduces to the corresponding 
dispersion equation in the absence of electrical effects (Chandrasekhar 1961). 
Similarly, for 9+00 it reduces to the result found earlier for diffusion equi- 
librium when disturbances have long wavelengths, namely that the effect of the 
diffuse layer is simply a negative contribution to interfacial tension (Miller & 
Scriven 1970b). 

Information on how ion transport influences wave motion can be obtained 
from (44). For a given value of al the solutions ru of (44) in the absence of double- 
layer effects, i.e. for a2 = 0, can be readily calculated. The definition of r following 
(24) can then be used to calculate the corresponding time factors for the motion: 

(46) 

Now if each solution r for the same a, and a small positive value of a, is written 
as the sum of an ‘unperturbed’ solution r, and a small perturbation rp, where 
Ir,l < lrul, it is easily shown from (44) that rp is given by 

Pu = ( W 2 / P  1 (1 - r 3 -  

The corresponding perturbation in the time factor is 

Pp = ( - 2 P E 2 i P ) ~ u ~ p .  (48) 

For a, = a2 = 0,  (44) has the solution ru = 1. (Only solutions with positive real 
parts are of interest since only then does the second exponential term of (31) 
remain finite as x --f 00.) Hence, ,8, vanishes and the interface is marginally stable. 
According to (47), the interface is also marginally stable when double-layer 
effects are present (a, > O), provided that the total interfacial tension yr retains 
its zero value. 

When a, is negative and a2 is zero one finds that r, > 1 and@, < 0. The interface 
is thus unstable for negative values of the total interfacial tension. In  this case 
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(47) and (48) predict a negative value for r, and a positive value for p,. The latter 
result implies that ion transport decreases the growth rate of unstable disturb- 
ances but does not remove the instability altogether. 

When a, is positive, the situation is somewhat more complicated. For 
0 < a, < 0.62 there are, for a given value of a,, two positive real roots r,, both 
lying between 0 and 1. The corresponding values of ,8, are both real and positive, 
i.e. the interface is stable and returns aperiodically to the initial plane configura- 
tion. The root leading to the slower damping rate is of primary interest since it 
describes interfacial behaviour after motion associated with the other root has 
died out. For the more slowly damped root it can be shown that 0.64 < r, < 1.  
According to (47) and (48)) r, > 0 andp, < 0, so that in this case too ion transport 
acts to slow down interfacial motion. 

For a, > 0.62 there are two complex roots ru which differ only in the signs of 
their imaginary parts. Both roots correspond to oscillatory motion with the same 
frequency and damping rate. For simplicity the following discussion is limited to 
the root with positive imaginary part although a similar argument leading to 
the same conclusion can be made for the other root. For the root of interest 
r, = rur+irui with r,, > 0, r,, > 0.64. Also /3, = ,8ur+i/3,i with bur > 0, p,, < 0. 
If r, is written as r,, + it-,+ (48) becomes 

P p P l P ~ 2  = - '(rurvpr-ruirpi) - 2 i ( ~ u r r p i + r p r ~ u A .  (49) 

Now it can be shown using (47) that r,, < 0 for all r, and that rPr < 0 for all rtL 
having r,, > 1. Under these conditions ,8,, 2 0, according to (49). Since pUi < 0 ,  
a decrease in frequency is predicted: another indication of the slowing effect of 
ion transport. Even when ru, is between 0.64 and 1, calculations using (47) show 
that ion transport produces a frequency decrease. In  contrast, the calculations 
demonstrate that the damping rate p, may either increase or decrease as a result 
of ion transport. 

These results can be interpreted as consequences of two electrical effects. One 
is that a finite resistance to transport keeps ions from responding instantaneously 
to changes in electrochemical potential which accompany interfacial deforma- 
tion. As a result, electrical forces which oppose the deforming forces and thus 
slow down the motion arise. This effect produces the frequency decrease for 
stable motion and contributes to the slower growth of unstable disturbances. 

The second effect is a direct result of the irreversible nature of the transport 
processes. During deformation there is interconversion of electrical and 
mechanical energy. In  view of the negative contribution of the diffuse layer to 
interfacial tension, it is clear that mechanical energy is produced as the perturba- 
tion amplitude increases and is removed as the amplitude decreases. Because of 
irreversibility, the interconversion process is accompanied by some dissipation 
of energy. Hence, the total electromechanical energy of the system decreases 
with time, producing st damping effect on stable wave motion and contributing 
to a decreased rate of growth of unstable disturbances. 

Although irreversibility of ion transport acts to damp oscillatory motion, 
viscous dissipation must also be considered in determining the overall damping 
rate. Near the interface a type of boundary-layer flow exists (see Miller & Xcriven 
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1968) and viscous dissipation in this region is decreased by the electrically 
produced reduction in oscillation frequency. When this effect is larger than the 
electrical damping effect the net result of ion transport is a decrease in damping 
rate. However, when the electrical damping effect is larger than the viscous 
effect, total damping rate increases. 

Calculations based on (44) show that the ion transport effects described above 
are relatively small in magnitude, a few per cent at most, when potential drops 
Yo are sufficiently small for the Debye-Huckel approximation to apply (less than 
about 25mV). The form of (45) suggests, however, that the effects increase 
rapidly with increasing Yo (note that they are independent of ionic strength 
since uz does not depend on the Debye length K - ~ ) .  Although the present analysis 
should not really be used for large values of Yo, it seems worth noting that, were 
(44) valid for aqueous diffuse layers having yDL in the 0.1-0.5dyne/cm range 
(Yo in the 50-100mV range), ion transport effects would cause reductions in 
oscillation frequency ranging from 15 to 45 yo. These values are based on calcula- 
tions with u1 = 10, e.g. on values of the wavenumber a and total interfacial 
tension yr of 10 cm-l and 0.02 dynelcm or 100 cm-l and 0-2 dynelcm. Thus, the 
present work suggests that ion transport effects should be considered in inter- 
preting capillary wave experiments in many low-tension systems. Indeed, if the 
general equations of ionic transport were solved numerically, such experiments 
could be used to provide quantitative information about the potential drop Yo 
and other electrical characteristics of low-tension interfaces. 

Further understanding of the slowing effect of ion transport can be obtained 
by considering the case of inviscid fluids. Although the results for this case cannot 
be applied directly to any system of interest, the pertinent equations are simpler 
and easier to interpret than those derived above for viscous fluids. For in the 
absence of viscosity the dispersion equation (39) reduces to 

When there is no resistance to ion transport, i.e. when 9-+co, y; = , 8 / 9 ~ 2  

vanishes and (50)  predicts undamped oscillatory motion when the interface is 
stable and aperiodic growth when it is unstable: 

P = kip; ( a / K  < 1). (51) 

However, when digusion coefficients are relatively small as in aqueous solutions, 
electrical forces slow down stable wave motion so much that it is no longer 
oscillatory a t  all. Instead the interface returns aperiodically to the plane con- 
figuration after deformation. This can be seen by expanding (50) in powers of y$ 
and (cx/K). The result is 

P = ~ P P ( P ,  + P Z ) / ~ Y D L ~ .  (52) 
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According to (52), the interface moves slower as the mean diffusion coeEcient 
becomes smaller, i.e. as resistance to transport increases. When there is no 
resistance to transport (9-+ co) or when there is no double layer at  all (yDL = 0 ) ,  
this mode decays very rapidly and the oscillatory mode described by (51) would 
be observed experimentally. 

The large slowing effect of electrical forces illustrated by the aperiodic result 
(52) is somewhat analogous to the slowing effect of a high fluid viscosity. In  
systems having no electric fields or double layers interfacial tension and gravity 
act to restore a wavy interface to the plane configuration. Opposing suchmotion 
are viscous stresses, which increase with both fluid viscosity and speed of motion. 
Since the total viscous force on an element of fluid cannot exceed the restoring 
force in magnitude, interfacial motion is very slow for fluids of extremely high 
viscosity. In  a similar manner retarding electrical forces increase both with re- 
sistance to transport (i.e. with 9 - I )  and with speed of motion. When g is small, 
the interfacial speed must be small to keep the retarding electrical force from 
exceeding the restoring force produced by interfacial tension and gravity. 

In this connexion, it is of interest that transport effects associated with 
electrical conduction can influence wave motion and stability in hydromagnetic 
systems. Zadoff & Begun (1968) studied situations where a uniform magnetic 
field is applied parallel to a plane interface separating an inviscid fluid of low 
resistivity from a vacuum. When gravity does not influence stability, i.e. for a 
vertical interface, their analysis predicts oscillatory wave motion which, although 
undamped in the absence of resistivity, continuously decreases in amplitude 
whcn a finite resistance exists. When the interface is horizontal with a perfectly 
conducting fluid above the vacuum, the interface may be either stable or unstable. 
If the magnetic field is too small to overcome gravitational effects and stabilize 
the interface under these conditions, finite resistivity leads, according to the 
analysis, only to changes in disturbance growth rates. However, if the magnetic 
field is large enough to stabilize the interface of a perfectly conducting fluid, new 
modes of instability are sometimes found when finite resistivity is included. The 
reason is that the system is enabled to reach low energy states which are not 
accessible in the absence of electrical resistance. 

Including effects of electrical resistance can also lead to new modes of insta- 
bility in systems where electric instead of magnetic fields are applied, but where 
there are no double layers. Sa.ville (1971) has shown that oscillatory modes of 
instability exist for fluid cylinders of finite resistivity in longitudinal electric 
fields which do not exist for perfectly conducting fluids. From a physical point 
of view, finite resistivity can slow down charge transport by conduction to such 
an extent that convective transport of charge along the interface becomes 
important. The resulting changes in interfacial charge distribution produce 
changes in electrical shear stresses which lead to the oscillatory modes of 
instability. 

That electrical resistance effects can produce new modes of electrohydro- 
dynamic instability in systems lacking double layers indicates that ion transport 
effects can, under appropriate conditions, do the same in systems having double 
layers. The analysis of this paper may be looked upon as an extension of existing 
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electrohydrodynamic work on wave motion and stability (Melcher 1963; Melcher 
& Smith 1969) to include systems with diffuse layers. If transport of charge 
across the interface were incorporated into the present work, Melcher & Smith's 
(1969) results for a plane interface could be obtained as a special case of the 
generalized analysis by requiring the free charge density pe to vanish uniformly. 
In  a similar manner Saville's oscillatory modes of instability could, presumably, 
be derived by considering fluid cylinders with diffuse layers. These and other 
aspects of the electrohydrodynamics of systems with diffuse layers are matters 
for further research. 

6. Aperiodic motion for short wavelengths 
Equation (44) applies to wave motion of interfaces with aqueous diffuse layers 

when disturbance wavelengths are relatively long, about 0.05 ern or longer. 
Another approximate version of the dispersion equation can be developed for 
situations where wavelengths are much shorter - about 5 x ern -but still 
considerably greater than the diffuse-layer thickness ( em). Under these con- 
ditions there is no oscillation but simply an aperiodic decay of wave amplitude, 
even in the absence of electrical effects. Because y2 = Pp/paz < 1 in this case, 
all terms in T in the dispersion equation can be expanded in powers of y2. Again 
C ~ / K  and y% are small and, when fluid densities and viscosities are assumed equal 
as before, (39) can be reduced, after considerable algebra, to 

When there is no resistance to transport ( 9 + c o )  or no potential drop across the 
diffuse layer (yDL = 0) ,  the second term inside the parentheses in the denominator 
is zero and (53) simplifies to the well-known expression for aperiodic motion of 
a viscous fluid when subjected to disturbances of short wavelengths (see Chandra- 
sekhar 1961). For an aqueous diffuse layer with K - ~  = low6 cm the requirement 
I P / ( ~ ~ K ) I  < 1 (see footnote a t  (38)) restricts applicability of (53) to situations 
where yT is less than about 0.1 dynelcm. When yT = 0.1 dynelcm, yDL = 
0.02 dynelcm (Yo = 22 mV) and a = i04 cm-l, (53) yields a time constant for 
decay of 5 x 10-5s) a value about 25% larger than that found when no resistance 
to ion transport exists. Thus, the slowing effect of ion transport found above 
for oscillatory motion extends to the aperiodic motion considered here, and, as 
before, the slowing effect increases rapidly with potential drop across the diffuse 
layer but is independent of the ionic strength. Unlike the earlier situation, how- 
ever, the slowing effect is substantial even when 'Yo is relatively small, i.e. 22 mV. 
It should be larger still for systems having potential drops in the 50-100 mVrange. 

Rates of aperiodic damping obtained from (53) are not highly significant in 
themselves because the pertinent wavelengths and time constants are too small 
to be easily measured experimentally. What is of interest is that the same type 
of approximation can probably be used to determine the effect of ion transport on 
wave motion of soap films and other thin liquid films. The reason is that in such 
films aperiodic decay dominates over a wide range of conditions (Vrij et al. 1970). 
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7. Summary 
An approximate solution of the equations describing convection and transport 

in a diffuse electrical double layer slightly perturbed from equilibrium has been 
obtained. The solution has been used to study two types of stable wave motion 
of low-tension interfaces with diffuse layers: damped oscillatory motion for wave- 
lengths which are relatively long (greater than about 0-05 cm for aqueous diffuse 
layers) and damped aperiodic motion for much shorter wavelengths (about 
5 x lO-4cm in aqueous solutions). In  both cases ion transport was found to have 
a slowing effect, reducing the frequency of oscillatory motion and the rate of 
damping of aperiodic motion. Consideration of unstable disturbances showed 
that their growth rates are slowed as well. 

The results for oscillatory motion indicate that diffuse-layer effects should be 
considered in interpreting results of capillary wave experiments involving low- 
tension interfaces. The most interesting aspect of the results for aperiodic motion 
is their strong suggestion that ion transport may significantly influence aperiodic 
motion of thin liquid films having low interfacial tension. 

The work presented here was supported by a National Science Foundation 
research grant. Discussions with L.E. Scriven during the course of the work 
were helpful. 
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